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=P~L Introduction

= Solution par solutions particulieres

= Solution en la Base Modale

= Orthogonalite des vecteurs propres

= Cas libre (reponse aux C.1.)

= Quotient de Rayleigh
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=Pir-L

Chapitre 11

Oscillateur Généralisé Conservatif




=PFL Equations Généralisées Conservatives

Equation différentielle de I’ oscillateur généralisé a
n degrés de liberté en régime libre conservatif

[(M]i+[K]x =0  (11.1)

Reformulation du régime libre de 1’oscillateur
généralisé conservatif

x+[M]'[K]lx=0 (112
X

. Meéthodes de résolution du régime libre de
X+|Alx =0 (11.4)

Ioscillateur généralisé

Combinaison linéaire de solutions
Définition du noyau du Systéme particulieres
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Changement de base par recours aux

] _
[A] = [M] [K] (11.3) coordonnées normales (ou découplées)



=P~L Resolution par solutions particulieres

Résolution du régime libre conservatif par
recherche de solutions particulieres de la forme

x = X cos(wt — ¢) (11.5)

Intégration de la solution dans I’expression du
régime libre conservatift

-2 [I]+][A]] X cos(wr — @) =0
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[A]-6[I]|X =0 (6 =0") (11.7)



=P~L Resolution par solutions particulieres

Condition pour une solution non triviale Equation caractéristique du systéme oscillant ou

equation aux pulsations propres

[A]-68[1] =0 (11.8)
5n + o 5171 + o, §n2

ou, par développement, +...+0, ,0+a, =0 (11.10)

(6111 —5) a din . "
Ordonnancement des solutions (toutes positives) de
21 (a22 B 5) A2 ~ 0 (119) I’équation caractéristique et des pulsations propres
6 <Oy < <6y < < By (11.11)
dni Up? (ann o 5)

W < << wy << wy (11.12)
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=P~L Resolution par solutions particulieres

Ecriture en notations indicielles du mode propre de

rang p
Solution particuliere du systeme différentiel r
relative a la pulsation propre de rang p Xy = Agy cos(a) =@ p)
X, = X, cos(w,t — 11.13 _
p p ( p ‘Pp) ( ) { Xip = Xl-p cos(a)pt—(pp) (11.14)
Xnp = . - cos(a)pt = (pp)
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=P~L Resolution par solutions particulieres

Calcul des composantes de 1a forme propre de
rang p

[A]-5,[1]|x, =0

Solution générale — Combinaison lin€aire des
solutions particulieres

n
Composantes des formes propres définies a un x(t) = 2 ,B_p)Xp Cos(a)pt — ¢p) (11.16)
facteur pres — Normalisation des amplitudes =l
Bip = x, — K= B,X,  (11.15)
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X, amplitude de référence



=PrL Résolution par solutions particulieres
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x(t) = 2 ,B_p)Xp cos(a)pt — <pp)
p=I

x(t) = EX, cos(w;t — @) + -+ + ,B_p)Xp cos(a)pt — <pp) + -+ ,B_,{Xn cos(w,t — @)

/xl E(15)\

x; (t)

\xn(6)/

[P

Bir

\bo/

X;cos(w;it —@p) + -+

Mode I

(Pio

,Bip

\bon/

Xp Cos(a)pt — <pp) + -+

Mode p

[P

,Bin

\son/

X, cos(w,t — @)

Mode n

(11.1%)



=PrL Reésolution dans la base modale

Résolution du régime libre conservatif par chan-

gement de base — Matrice de changement de base / bu - bip - :81n\
% = [B]G (11.31) Bl=B, . By - Bpn)=|Bu -~ Bip - Bun
q, coordonnées normales ou modales de \ Bui o Bup o Bun /

rangp(p =1,2,...,n)

| B| matrice de changement de base

Lien entre les accélérations du systeme et les

accélérations modales ou normales Reformulation du régime libre conservatif par le

changement de base
X = [B]g (11.32)
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[M][B]q + [K][Blg =0  (11.33)




=PrL Résolution dans la base modale
[M][B]q + [K][B]lg=0  (11.33)

Prémultiplication de I’expression du régime libre
par la matrice [ B]"

[BI"[M][Blg + [BIT[K][Blg =0  (11.34)

Conditions pour un découplage des n équations
du régime libre conservatif

: B Condition nécessaire et suffisante d’existence d’une
|Me | =[B] [M][B] (11.35) matrice | B | diagonalisant simultanément [ M| et [ K|

(K] =[B] [K][B]

: L

M|et|K] symétriques
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avec [M?] et [ K| diagonales M| et/ou | K| définie(s) strictement positive(s)

1



=PrL Reésolution dans la base modale

(11.34)

(11.35)

Découplage des n équations du régime libre
conservatif

mo g, +k)q,=0 (p=12,....,n) (11.28)
g, +0,q9,=0 (p=12,.., n) (11.29)
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=PrL Reésolution dans la base modale

[BI"[M][B]q + [BIT[K][BIGg =0  (11.34)
Expression matricielle du régime libre

1.36)

[B]'[M][K][B] (1137)
= [B]'[A][B] (11.38)
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[A] matrice des valeurs propres de | A |
[ B] matrice des vecteurs propres de | A |




=PrL Reésolution dans la base modale

Régime libre découpl€ en n équations
[M°]G +[K°]G =0 (11.43)

G+ [M°]"[K°lG=0 (11.44)

Forme finale du régime libre par découplage en n
équations différentielles du second ordre

G+[4lg=0  (11.46)
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[A]=[Mo] ' [Ke]  (11.45)




=PrL Reésolution dans la base modale

Intégration des équations différentielles
découplées

qp — Qp COS(a)pt = (pp)
p=12,...n (1153)

Forme générale de la solution du régime libre
découplé
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£PFL Energie dans la base/forme modale

Energie cinétique du systeme exprimée dans la Energie potentielle du systeme exprimée dans la
base modale base modale

(11.47)
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EPFL Fréequences propres
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Positivité des valeurs propres (carrés des
pulsations propres) du systéeme
> 0 | Me | définie strictement positive
k? > 0 | Ke| définie positive non strictement

k()
=~ 2 i) (11.49-52)

p

Ordonnancement des solutions (toutes positives) de
I’équation caractéristique et des pulsations propres

i < g T oon 0y € s € Gy (11.11)

W < W <..<O, <..<o, (11.12)



=PFL Orthogonalité des vecteurs modaux

Indépendance linéaire des vecteurs modaux
Ny, B, #0 (11.56)
p

Développement de la projection de 1a matrice de

masse | M | dans la base modale (base des Identification terme a terme des masses modales
vecteurs modaux)
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) B (M, =m; (11.58)
[B]' [M][B] = |M°]|  (11.57) BT (M]B, =0 r#s (11.59)
% lT_l _ml() O u
[M]|B, ... bn]= Orthogonalité des vecteurs modaux
4 0 -
Pn | i my | ﬂ’?“ [M]ﬂs = 5’,5 m? (11.60)



=PFL Orthogonalité des vecteurs modaux

Développement de la projection de 1a matrice de
rigidité | M | dans la base modale (base des

vecteurs modaux)

[B]'[K][B] =[k°]

T ke 0
(K[, ... B,]= |

n

Identification terme a terme des rigidités modales

BT KB, = k¢
PTIK|p, =0 r#s

/4
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=PFL Orthogonalité des vecteurs modaux

Deuxieme forme de I’ orthogonalité des vecteurs
modaux

B/ KB, =06,k (11.61)

Orthogonalité des vecteurs modaux et des modes
propres

Le produit scalaire, pondéré par la matrice des
masses ou la matrice de rigidité, de deux formes
propres ou modes propres de rang différent est nul.

Orthogonalité directe lorsque la matrice des masses
est diagonale a termes tous égaux, [M | = mq | ]

Meécanique Vibratoire - SGM Bab - G. Villanueva

prp. =0 r#s (11.62)



=PFL Normalisation des vecteurs modaux

Procédures de normalisation du vecteur modal de
rang p (p=1, 2, ...n)

Valeur unitaire attribuée a I'amplitude d'une
variable déterminée i du vecteur de rang p

X, =1

Valeur unitaire attribuée a la plus grande des
amplitudes du vecteur de rang p

(Xl )max ~ 1

Masse modale de rang p rendue unitaire

pT(MIB, =1  (11.63)

Norme unitaire du vecteur de rang p
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2! 18,] = iﬁ,%, =1 (11.64)



£PFL Reponse a des conditions initiales

Conditions d’un lacher initial

x(0) =X, = 3B, X, cosp,  (11.65-67)

p

x(0)=Vy =) p,0,X,sing, (11.66-68)

Prémultiplication des conditions initiales par le
produit 7| M|

BTIM]X, = iﬂz[M]ﬂp X, cos @,
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prim|v, —Z,BT 1B, w, X,sing,
22



£PFL Reponse a des conditions initiales

Extraction de I’amplitude de référence et de la
phase du mode de rang r

1
0
m,

1
X, sin@, = BTIMV,  (11.70)
a)r

0
m¢

X cosp, = —pr{M|X, (11.69)

Réponse du systeme aux conditions initiales
n
X = Zﬁp X, cos(a)pt = (pp)
p

= Zﬂp Xp(cosqop COS @ ,t +sin @, sin a)pt)
p
1 )
ﬁp[ﬁg[M]Xo COS (1 - - Bl IM]|Vysinw i
P J
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1

0
mP
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£PFL Reponse a des conditions initiales
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Réponse du systeme aux conditions initiales

n n 1
x=)p,X, cos(a)pt— qop) =) -
p

P P

Cas particulier d’un déplacement initial
proportionnel a un vecteur modal ( X, = X, f8,)
et d’une vitesse initiale nulle (V,, = 0)

X = Xoi 1 ﬂp(ﬂ]{[M]ﬂr)cosa)pt
p

0
mP

= Xy B, cosw,t (11.74)

1 .
ﬁp[ﬁg[M]Xo COS 1 - , ﬂg[M]VO Sin @ 1

\

p Y,

Cas particulier d’un déplacement initial et d’une
vitesse initiale proportionnels a un vecteur modal

(Xg =Xo b, Vo =W B)

[

2
X = \/Xg +(ZO) B cos(a),,t - (p,,)

¥

tg @, = (11.76)

XO ,



£PFL Reponse a des conditions initiales

Cas particulier d’un déplacement initial
proportionnel a un vecteur modal ( X, = X, f8,)
et d’une vifesse initiale nulle (V, = 0)

x:XOi
p

l T
M = , : 11.74
Zﬁp (ﬂp[ ]ﬂ,,)cosa)pt Xy B, cosm, 1 ( )

Cas particulier d’un déplacement initial et d’une
vitesse initiale proportionnels a un vecteur modal

(XO = XO ﬂr’ VO = VO ﬁr)

| 2
X = \/Xg : (ZO) B, cos(w,t - @,)
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(11.76)
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=PFL Quotient de Rayleigh

Définition du qguotient de Rayleigh (u vecteur
quelconque)

u’ | K |u

M) = T M

(11.79)

Valeur du quotient de Rayleigh pour un vecteur

modal
Tl 0
R(p,) = ];:K]ﬂp B pr = O, = i
pIMIB, mg
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RN P T, (11.78)
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=PFL Quotient de Rayleigh

Valeur du quotient de Rayleigh pour un vecteur
quelconque u écrit comme combinaison lin€aire
des vecteurs modaux ,b’p (p=1,2,...%)

: TR

s R(u) =R 2.7, B,

O \ P J

| '3

g = R([B]y) avec y={y1,...}/p,...yn}

= n

% _ 25 },2

_ (BT IKIBly _ylAly_ 5" .
g '[B]' [M][B 7Ty - |
= 7 1D] | ][ ]Y Zyg

3 sous la condition de normalisation P

=



=PFL Quotient de Rayleigh
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Valeur du quotient de Rayleigh au voisinage d’un
vecteur modal

5, + 3 8, ¢

R(u) = e (11.85)
14 X B3
PD#r
avec
Yo =8, ¥ (p=12,...,n)
€, <<1 Vp#r (11.84)

Stationnarité du quotient de Rayleigh au
voisinage du vecteur modal considéré

R(u)

U

U

/

\

o, + i5p 8[2)

P#r

\

J

(

\

no)
1—2812)

p#r )

5,+3(5,-5,)e

P#Fr

(11.895)

(11.86)



=PFL Quotient de Rayleigh

Valeur du quotient de Rayleigh au voisinage du
vecteur modal fondamental

R(u) = &, + i(ép -8, )€l (11.87)

PDFTr

> 0§, (11.88) Théoreme d’encadrement du quotient de Rayleigh

0, < R(u)< 9,
Valeur du quotient de Rayleigh au voisinage du
vecteur modal de rang n

Meécanique Vibratoire - SGM Bab - G. Villanueva

Principe de Rayleigh
R(u)=~8,+ (5, -5,)¢ 6, = min R()
pET
<5 0, = max R(u)

n
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